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Abstract

The R package stochvol provides a fully Bayesian implementation of heteroskedasticity
modeling within the framework of stochastic volatility. It utilizes Markov chain Monte
Carlo (MCMC) samplers to conduct inference by obtaining draws from the posterior
distribution of parameters and latent variables which can then be used for predicting
future volatilities. The package can straightforwardly be employed as a stand-alone tool;
moreover, it allows for easy incorporation into other MCMC samplers. The main focus
of this paper is to show the functionality of stochvol. In addition, it provides a brief
mathematical description of the model, an overview of the sampling schemes used, and
several illustrative examples using exchange rate data.
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Preface
This vignette corresponds to an article of the same name which is published in the Jour-
nal of Statistical Software. The code base of the vignette has been updated to reflect the
changes in recent versions of stochvol. To cite, please use Kastner (2016a). Further infor-
mation about citing stochvol can be obtained in R by installing the package, e.g., through
install.packages("stochvol"), and calling citation("stochvol").

1. Introduction
Returns – in particular financial returns – are commonly analyzed by estimating and predict-
ing potentially time-varying volatilities. This focus has a long history, dating back at least
to Markowitz (1952) who investigates portfolio construction with optimal expected return-
variance trade-off. In his article, he proposes rolling-window-type estimates for the instanta-
neous volatilities, but already then recognizes the potential for “better methods, which take
into account more information”.
One approach is to model the evolution of volatility deterministically, i.e., through the
(G)ARCH class of models. After the groundbreaking papers of Engle (1982) and Bollerslev
(1986), these models have been generalized in numerous ways and applied to a vast amount of
real-world problems. As an alternative, Taylor (1982) proposes in his seminal work to model
the volatility probabilistically, i.e., through a state-space model where the logarithm of the
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squared volatilities – the latent states – follow an autoregressive process of order one. Over
time, this specification became known as the stochastic volatility (SV) model. Even though
several papers (e.g., Jacquier, Polson, and Rossi 1994; Ghysels, Harvey, and Renault 1996;
Kim, Shephard, and Chib 1998) provide early evidence in favor of using SV, these models have
found comparably little use in applied work. This obvious discrepancy is discussed in Bos
(2012) who points out two reasons: the variety (and potential incompatibility) of estimation
methods for SV models – whereas the many variants of the GARCH model have basically a
single estimation method – and the lack of standard software packages implementing these
methods.
In Kastner and Frühwirth-Schnatter (2014), the former issue is thoroughly investigated and
an efficient MCMC estimation scheme is proposed. The paper at hand and the corresponding
package stochvol (Kastner 2016b) for R (R Core Team 2016) are crafted to cope with the
latter problem: the apparent lack of ready-to-use software packages for efficiently estimating
SV models.

2. Model specification and estimation
We begin by briefly introducing the model and specifying the notation used in the remainder
of the paper. Furthermore, an overview of Bayesian parameter estimation via Markov chain
Monte Carlo (MCMC) methods is given.

2.1. The SV model

Let y = (y1, y2, . . . , yn)⊤ be a vector of returns with mean zero. The intrinsic feature of
the SV model is that each observation yt is assumed to have its “own” contemporaneous
variance eht , thus relaxing the usual assumption of homoskedasticity. In order to make the
estimation of such a model feasible, this variance is not allowed to vary unrestrictedly with
time. Rather, its logarithm is assumed to follow an autoregressive process of order one. Note
that this feature is fundamentally different to GARCH-type models where the time-varying
volatility is assumed to follow a deterministic instead of a stochastic evolution.
The SV model can thus be conveniently expressed in hierarchical form. In its centered pa-
rameterization, it is given through

yt|ht ∼ N (0, exp ht) , (1)
ht|ht−1, µ, ϕ, ση ∼ N

(
µ + ϕ(ht−1 − µ), σ2

η

)
, (2)

h0|µ, ϕ, ση ∼ N
(
µ, σ2

η/(1 − ϕ2)
)

, (3)

where N
(
µ, σ2

η

)
denotes the normal distribution with mean µ and variance σ2

η. We refer
to θ = (µ, ϕ, ση)⊤ as the vector of parameters: the level of log-variance µ, the persistence
of log-variance ϕ, and the volatility of log-variance ση. The process h = (h0, h1, . . . , hn)
appearing in Equation 2 and Equation 3 is unobserved and usually interpreted as the latent
time-varying volatility process (more precisely, the log-variance process). Note that the initial
state h0 appearing in Equation 3 is distributed according to the stationary distribution of the
autoregressive process of order one.
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2.2. Prior distribution

To complete the model setup, a prior distribution for the parameter vector θ needs to be
specified. Following Kim et al. (1998), we choose independent components for each parameter,
i.e., p(θ) = p(µ)p(ϕ)p(ση).
The level µ ∈ R is equipped with the usual normal prior µ ∼ N (bµ, Bµ). In practical
applications, this prior is usually chosen to be rather uninformative, e.g., through setting
bµ = 0 and Bµ ≥ 100 for daily log returns. Our experience with empirical data is that the
exact choice is usually not very influential; see also Section 3.2.
For the persistence parameter ϕ ∈ (−1, 1), we choose (ϕ + 1)/2 ∼ B (a0, b0), implying

p(ϕ) = 1
2B(a0, b0)

(1 + ϕ

2

)a0−1 (1 − ϕ

2

)b0−1
, (4)

where a0 and b0 are positive hyperparameters and B(x, y) =
∫ 1

0 tx−1(1 − t)y−1 dt denotes
the beta function. Clearly, the support of this distribution is the interval (−1, 1); thus,
stationarity of the autoregressive volatility process is guaranteed. Its expected value and
variance are given through the expressions

E(ϕ) = 2a0
a0 + b0

− 1,

V (ϕ) = 4a0b0
(a0 + b0)2(a0 + b0 + 1) .

This obviously implies that the prior expectation of ϕ depends only on the ratio a0 : b0. It
is greater than zero if and only if a0 > b0 and smaller than zero if and only if a0 < b0. For a
fixed ratio a0 : b0, the prior variance decreases with larger values of a0 and b0. The uniform
distribution on (−1, 1) arises as a special case when a0 = b0 = 1. For financial datasets
with not too many observations (i.e., n ≲ 1000), the choice of the hyperparameters a0 and
b0 can be quite influential on the shape of the posterior distribution of ϕ. In fact, when
the underlying data-generating process is (near-)homoskedastic, the volatility of log-variance
ση is (very close to) zero and thus the likelihood contains little to no information about ϕ.
Consequently, the posterior distribution of ϕ is (almost) equal to its prior, no matter how
many data points are observed. For some discussion about this issue, see, e.g., Kim et al.
(1998) who choose a0 = 20 and b0 = 1.5, implying a prior mean of 0.86 with a prior standard
deviation of 0.11 and thus very little mass for nonpositive values of ϕ.
For the volatility of log-variance ση ∈ R+, we choose σ2

η ∼ Bση × χ2
1 = G

(
1/2, 1/2Bση

)
. This

choice is motivated by Frühwirth-Schnatter and Wagner (2010) who equivalently stipulate
the prior for ±

√
σ2

η to follow a centered normal distribution, i.e., ±
√

σ2
η ∼ N

(
0, Bση

)
. As

opposed to the more common Inverse-Gamma prior for σ2
η, this prior is not conjugate in the

usual sampling scheme. However, it does not bound σ2
η away from zero a priori. The choice of

the hyperparameter Bση turns out to be of minor influence in empirical applications as long
as it is not set too small.

2.3. MCMC sampling

An MCMC algorithm such as the one implemented in the package stochvol provides its user
with draws from the posterior distribution of the desired random variables; in our case with
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the latent log-variances h and the parameter vector θ. Because these draws are usually
dependent, Bayesian inference via MCMC may require careful design of the algorithm and
attentive investigation of the draws obtained.

One key feature of the algorithm used in this package is the joint sampling of all instantaneous
volatilities “all without a loop” (AWOL), a technique going back at least to Rue (2001)
and discussed in more detail in McCausland, Miller, and Pelletier (2011). Doing so reduces
correlation of the draws significantly and requires auxiliary finite mixture approximation of
the errors as in Kim et al. (1998) or Omori, Chib, Shephard, and Nakajima (2007).

In order to avoid the cost of code interpretation within each MCMC iteration, the core
computations are implemented in C. Their output is interfaced to R via the Rcpp package
(Eddelbuettel and François 2011); there, the convenience functions and the user interface
are implemented. This combination allows to make use of the well-established and widely
accepted ease-of-use of R and its underlying functional programming paradigm. Moreover,
existing frameworks for analyzing MCMC output such as coda (Plummer, Best, Cowles, and
Vines 2006) as well as high-level visualization tools can easily be used. Last but not least, users
with a basic knowledge of R can use the package with a very low entry cost. Nevertheless,
despite all these convenience features, the package profits from a highly optimized machine
code generated by a compiler at package build time, thus providing acceptable runtime even
for larger datasets.

A novel and crucial feature of the algorithm implemented in stochvol is the usage of a variant
of the “ancillarity-sufficiency interweaving strategy” (ASIS) which has been brought forward
in the general context of state-space models by Yu and Meng (2011). ASIS exploits the
fact that for certain parameter constellations sampling efficiency improves substantially when
considering a non-centered version of a state-space model. This is commonly referred to
as a reparameterization issue and dealt with extensively in scholarly literature; for an early
reference see, e.g., Hills and Smith (1992). For the model at hand, a move of this kind can
be achieved by transferring the level of log-variance µ and/or the volatility of log-variance ση

from the state process (Equations 2 and 3) to the observation process (Equation 1) through
a simple reparameterization of h. However, in the case of the SV model, it turns out that no
single superior parameterization exists. Rather, for some underlying processes, the standard
parameterization yields superior results, while for other processes non-centered versions are
better. To overcome this issue, the parameter vector θ is sampled twice: once in the centered
and once in a noncentered parameterization. This method of “combining best of different
worlds” allows for efficient inference regardless of the underlying process with one algorithm.
For more details about the algorithm and empirical results concerning sampling efficiency, see
Kastner and Frühwirth-Schnatter (2014).

3. The stochvol package

The usual stand-alone approach to fitting SV models with stochvol exhibits the following
workflow: (1) Prepare the data, (2) specify the prior distributions and configuration param-
eters, (3) run the sampler, (4) assess the output and display the results. All these steps are
described in more detail below, along with a worked example. For a stepwise incorporation
of SV effects into other MCMC samplers, see Section 4.
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3.1. Preparing the data

The core sampling function svsample expects its input data y to be a numeric vector of
returns without any missing values (NAs) and throws an error if provided with anything else.
In the case that y contains zeros, a warning is issued and a small offset constant of size
sd(y)/10000 is added to the squared returns before doing the auxiliary mixture sampling
(cf. Omori et al. 2007). However, we generally recommend to avoid zero returns altogether,
e.g., by demeaning them beforehand.
Below is an illustration of how to prepare data by using the sample dataset exrates1 included
in the package. Figure 1 provides a visualization of a time series from this dataset.

R> set.seed(123)
R> library("stochvol")
R> data("exrates")
R> ret <- logret(exrates$USD, demean = TRUE)
R> par(mfrow = c(2, 1), mar = c(1.9, 1.9, 1.9, 0.5), mgp = c(2, 0.6, 0))
R> plot(exrates$date, exrates$USD, type = "l",
+ main = "Price of 1 EUR in USD")
R> plot(exrates$date[-1], ret, type = "l", main = "Demeaned log returns")

Figure 1: Visualization of EUR-USD exchange rates included in the stochvol package.

Additionally to real-world data, stochvol also has a built-in data generator svsim. This
function simply produces realizations of an SV process and returns an object of class svsim

1The dataset – obtained from the European Central Bank’s Statistical Data Warehouse – contains the daily
bilateral prices of one euro in 23 currencies from January 3, 2000 until April 4, 2012. Conversions to New
Turkish lira and Fourth Romanian leu have been incorporated. See ?exrates for more information.
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which has its own print, summary, and plot methods. Exemplary code using svsim is given
below and the particular instance of this simulated series is displayed in Figure 2.

R> sim <- svsim(500, mu = -9, phi = 0.99, sigma = 0.1)
R> par(mfrow = c(2, 1))
R> plot(sim)

Figure 2: Visualization of a simulated time series as provided by the default plot method.

3.2. Specifying prior distributions and configuration parameters
After preparing the data vector y, the user needs to specify the prior hyperparameters for the
parameter vector θ = (µ, ϕ, ση)⊤ – see also Section 2.2 – and some configuration parameters.
The appropriate values are passed to the main sampling function svsample as arguments
which are described below.
The argument priormu is a vector of length 2, containing mean and standard deviation of
the normal prior for the level of the log-variance µ. A common strategy is to choose a vague
prior here, e.g., c(0, 100), because the likelihood usually carries enough information about
this parameter. If one prefers to use (slightly) informative priors, e.g., to avoid outlier draws
of µ, one must pay attention to whether log returns or percentage log returns are analyzed.
Assuming daily data, log returns commonly have an unconditional variance of 0.0001 or less
and thus the level on the log scale µ lies around log(0.0001) ≈ −9. Percentage log returns,
on the other hand, have the 1002-fold unconditional variance (around 1) which implies a
level of log(1) = 0. Choices in the literature include c(0, 10) (Jacquier, Polson, and Rossi
2004), c(0, 5) (Yu 2005), c(0, sqrt(10)) (Kim et al. 1998; Meyer and Yu 2000) or c(0,
1) (Omori et al. 2007). Note that most of these choices are quite informative and clearly
designed for percentage log returns.



Gregor Kastner 7

For specifying the prior hyperparameters for the persistence of log-variance, ϕ, the argument
priorphi may be used. It is again a vector of length 2, containing a0 and b0 specified in
Equation 4. As elaborated in Section 2.2, these values can possibly be quite influential, thus
we advise to choose them carefully and study the effects of different choices. The default
is currently given through c(5, 1.5), implying a prior mean of 0.54 and a prior standard
deviation of 0.31.
The prior variance of log-variance hyperparameter Bση may be controlled through priorsigma.
This argument defaults to 1 if not provided by the user. As discussed in Section 2.2, the exact
choice of this value is usually not very influential in typical applications. In general, it should
not be set too small unless there is a very good reason, e.g., explicit prior knowledge, to do
so.
For specifying the size of the burn-in, the parameter burnin is provided. It is the amount
of MCMC iterations that are run but discarded to ensure convergence to the stationary
distribution of the chain. The current default value for this parameter is 1000 which has turned
out to suffice in most situations. Nevertheless, the user is encouraged to check convergence
carefully; see Section 3.4 for more details. The amount of iterations which are run after burn-in
can be specified through the parameter draws, currently defaulting to 10 000. Consequently,
the sampler is run for a total of burnin + draws iterations.
Three thinning parameters are available which all are 1 if not specified otherwise. The first
one, thinpara, is the denominator in the fraction of parameter draws (i.e., draws of θ) that are
stored. E.g., if thinpara equals 10, every 10th draw is kept. The default parameter thinning
value of 1 means that all draws are saved. The second thinning parameter, thinlatent, acts
in the same way for the latent variables h. The third thinning parameter, thintime, refers to
thinning with respect to the time dimension of the latent volatility. In the case that thintime
is greater than 1, not all elements of h are stored, e.g., for thintime equaling 10, only the
draws of h1, h11, h21, . . . (and h0) are kept.
Another configuration argument is quiet which defaults to FALSE. If set to TRUE, all output
during sampling (progress bar, status messages) is omitted. The arguments startpara and
startlatent are optional starting values for the parameter vector θ and the latent variables
h, respectively. All other configuration parameters are summarized in the argument expert,
because it is not very likely that the end-user needs to mess with the defaults.2 Please refer
to the package documentation and Kastner and Frühwirth-Schnatter (2014) for details.
Any further arguments (...) are forwarded to updatesummary, controlling the type of sum-
mary statistics that are calculated for the posterior draws.

3.3. Running the sampler

At the heart of the package stochvol lies the function svsample which serves as an R-wrapper
for the actual sampler coded in C. Exemplary usage of this function is given in the code

2Examples of configurations that can be changed with the expert-argument include the specification of
the (baseline) parameterization (either centered or noncentered) and the possibility to turn off interweaving.
Moreover, some algorithmic details such as the number of blocks used for the parameter updates or the
possibility of using a random walk Metropolis-Hastings proposal (instead of the default independence proposal)
can be found here.
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snipped below, along with the default output.3

R> ret <- ret[1:200]
R> res <- svsample(ret, priormu = c(-10, 1), priorphi = c(20, 1.1),
+ priorsigma = 0.1, thin = 10)

As can be seen, this function calls the main MCMC sampler and converts its output to coda-
compatible objects. The latter is done mainly for reasons of compatibility and in order to
have straightforward access to the convergence diagnostics checks implemented there. More-
over, some summary statistics for the posterior draws are calculated. The return value of
svsample is an object of type svdraws which is a named list with eight elements, holding
(1) the parameter draws in para, (2) the latent log-volatilities in latent, (3) the initial la-
tent log-volatility draw in latent0, (4) the data provided in y, (5) the sampling runtime in
runtime, (6) the prior hyperparameters in priors, (7) the thinning values in thinning, and
(8) summary statistics of these draws, alongside some common transformations thereof, in
summary.

3.4. Assessing the output and displaying the results

Following common practice, print and summary methods are available for svdraws objects.
Each of these has two optional parameters, showpara and showlatent, specifying which
output should be displayed. If showpara is TRUE (the default), values/summaries of the
parameter draws are shown. If showlatent is TRUE (the default), values/summaries of the
latent variable draws are shown. In the example below, the summary for the parameter draws
only is displayed.

R> summary(res, showlatent = FALSE)

Summary of 'svdraws' object

Prior distributions:
mu ~ Normal(mean = -10, sd = 1)
(phi+1)/2 ~ Beta(a = 20, b = 1.1)
sigma^2 ~ Gamma(shape = 0.5, rate = 5)
nu ~ Infinity
rho ~ Constant(value = 0)

Stored 1000 MCMC draws after a burn-in of 1000.
Thinning: 10.

Posterior draws of SV parameters (thinning = 10):
mean sd 5% 50% 95% ESS

mu -9.6176 0.18467 -9.9017 -9.6057 -9.3588 834
3In order to decrease compilation time and PDF size on CRAN, we shrink the data set ret to contain only

a smaller number of data points and we apply thinning of size 10. In the original paper, the entire object was
used without thinning.
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phi 0.8404 0.10287 0.6416 0.8616 0.9676 379
sigma 0.2144 0.10086 0.0553 0.2118 0.3871 382
exp(mu/2) 0.0082 0.00078 0.0071 0.0082 0.0093 834
sigma^2 0.0561 0.04927 0.0031 0.0449 0.1499 382

There are several plotting functions specifically designed for objects of class svsample which
are described in the following paragraphs.

(1) volplot: Plots posterior quantiles of the latent volatilities in percent, i.e., empirical
quantiles of the posterior distribution of 100 exp(ht/2), over time. Apart from the
mandatory svsample-object itself, this function takes several optional arguments. Only
some are mentioned here; for an exhaustive list please see the corresponding help doc-
ument accessible through ?volplot or help(volplot). Selected optional arguments
that are commonly used include forecast for n-step-ahead volatility prediction, dates
for labels on the x-axis, alongside some graphical parameters. The code snipped below
shows a typical example and Figure 3 displays its output.

R> volplot(res, forecast = 100, dates = exrates$date[seq_along(ret)])

Figure 3: Visualization of estimated contemporaneous volatilities of EUR-USD exchange
rates, as provided by volplot. If not specified otherwise, posterior medians and 5%/95%
quantiles are plotted. The dotted lines on the right indicate predicted future volatilities.

In case the user wants to display different posterior quantiles, the updatesummary func-
tion has to be called first. See the code below for an example and Figure 4 for the
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corresponding plot.

R> res <- updatesummary(res, quantiles = c(0.01, 0.1, 0.5, 0.9, 0.99))
R> volplot(res, forecast = 100, dates = exrates$date[seq_along(ret)])

Figure 4: As above, now with medians (black line) and 1%/10%/90%/99% quantiles (gray
lines). This behavior can be achieved through a preceding call of updatesummary.

(2) paratraceplot: Displays trace plots for the parameters contained in θ. Note that the
burn-in has already been discarded. Figure 5 shows an example.

R> par(mfrow = c(3, 1))
R> paratraceplot(res)

(3) paradensplot: Displays a kernel density estimate for the parameters contained in θ.
If the argument showobs is TRUE (which is the default), individual posterior draws
are indicated through a rug, i.e., short vertical lines along the x-axis. For quicker
drawing of large posterior samples, this argument should be set to FALSE. If the argument
showprior is TRUE (which is the default), the prior distribution is indicated through a
dashed gray line. Figure 6 shows a sample output for the EUR-USD exchange rates
obtained from the exrates dataset.

R> par(mfrow = c(1, 3))
R> paradensplot(res, showobs = FALSE)
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Figure 5: Trace plots of posterior draws for the parameters µ, ϕ, ση.

Figure 6: Posterior density estimates (black solid lines) along with prior densities (dashed
gray lines). Individual posterior draws are indicated by the underlying rug.
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The generic plot method for svdraws objects combines all above plots into one plot. All
arguments described above can be used. See ?plot.svsample for an exhaustive summary of
possible arguments and Figure 7 for an example.

R> plot(res, showobs = FALSE)

Figure 7: Illustration of the default plot method for svdraws-objects. This visualization
combines volplot (Figure 4), traceplot (Figure 5), and paradensplot (Figure 6) into one
single plot.

For extracting standardized residuals, the residuals/resid method can be used on a given
svdraws object. With the optional argument type, the type of summary statistic may be
specified. Currently, type is allowed to be either "mean" or "median", where the former
corresponds to the default value. This method returns a real vector of class svresid which
contains the requested summary statistic of standardized residuals for each point in time.
There is also a plot method available, providing the option of comparing the standardized
residuals to the original data when given through the argument origdata. See the code below
for an example and Figure 8 for the corresponding output.
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R> myresid <- resid(res)
R> plot(myresid, ret)

Figure 8: Mean standardized residual plots for assessing the model fit, as provided by the cor-
responding plot method. The dashed lines in the bottom left panel indicate the 2.5%/97.5%
quantiles of the standard normal distribution.

4. Using stochvol within other samplers
We demonstrate how the stochvol package can be used to incorporate stochastic volatility
into any given MCMC sampler. This is particularly easy when the sampler itself is coded
in R or C/C++ and applies, e.g., to many of the specialized procedures listed in the CRAN
task view about Bayesian inference, available at http://cran.r-project.org/web/views/
Bayesian.html. For the sake of simplicity, we explain the procedure using a “hand-coded”
Gibbs-sampler for the Bayesian normal linear model with n observations and k = p − 1
predictors, given through

y|β, Σ ∼ N (Xβ, Σ) . (5)

http://cran.r-project.org/web/views/Bayesian.html
http://cran.r-project.org/web/views/Bayesian.html


14 Dealing with Stochastic Volatility in Time Series Using the R Package stochvol

Here, y denotes the n×1 vector of responses, X is the n×p design matrix containing ones in
the first column and the predictors in the others, and β = (β0, β1, . . . , βp−1)⊤ stands for the
p × 1 vector of regression coefficients. In the following sections, we discuss two specifications
of the n × n error covariance matrix Σ.

4.1. The Bayesian normal linear model with homoskedastic errors

The arguably simplest specification of the error covariance matrix in Equation 5 is given by
Σ ≡ σ2

ϵ I, where I denotes the n-dimensional unit matrix. This specification is used in many
applications and commonly referred to as the linear regression model with homoskedastic
errors. To keep things simple, let model parameters β and σ2

ϵ be equipped with the usual
conjugate prior p(β, σ2

ϵ ) = p(β|σ2
ϵ )p(σ2

ϵ ), where

β|σ2
ϵ ∼ N

(
b0, σ2

ϵ B0
)

,

σ2
ϵ ∼ G−1(c0, C0) .

Commonly, samples from the posterior distribution of this model are obtained through a
Gibbs-algorithm, where draws are generated in turn from the full conditional distributions
β|y, σ2

ϵ ∼ N (bT , BT ) with

bT =
(
X⊤X + B−1

0

)−1 (
X⊤y + B−1

0 b0
)

, BT = σ2
ϵ

(
X⊤X + B−1

0

)−1
,

and σ2
ϵ |y, β ∼ G−1(cn, Cn) with

cn = c0 + n

2 + p

2 , Cn = C0 + 1
2

(
(y − Xβ)⊤(y − Xβ) + (β − b0)⊤B−1

0 (β − b0)
)

.

In R, this can straightforwardly be coded as follows:

• Set the seed to make results reproducible and simulate some data from the underlying
model:

R> set.seed(123456)
R> n <- 200
R> beta.true <- c(0.1, 0.5)
R> sigma.true <- 0.01
R> X <- matrix(c(rep(1, n), rnorm(n, sd = sigma.true)), nrow = n)
R> y <- rnorm(n, X %*% beta.true, sigma.true)

• Specify the size of the burn-in and the number of draws thereafter; set the prior param-
eters:

R> burnin <- 100
R> draws <- 1000
R> b0 <- matrix(c(0, 0), nrow = ncol(X))
R> B0inv <- diag(c(10^-10, 10^-10))
R> c0 <- 0.001
R> C0 <- 0.001
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• Pre-calculate some values outside the main MCMC loop:

R> p <- ncol(X)
R> preCov <- solve(crossprod(X) + B0inv)
R> preMean <- preCov %*% (crossprod(X, y) + B0inv %*% b0)
R> preDf <- c0 + n/2 + p/2

• Assign some storage space for holding the draws and set an initial value for σ2
ϵ :

R> draws1 <- matrix(NA_real_, nrow = draws, ncol = p + 1)
R> colnames(draws1) <- c(paste("beta", 0:(p-1), sep = "_"), "sigma")
R> sigma2draw <- 1

• Run the main sampler: Iteratively draw from the conditional bivariate Gaussian distri-
bution β|y, σ2

ϵ , e.g., through the use of mvtnorm (Genz et al. 2013), and the conditional
Inverse Gamma distribution σ2

ϵ |y, β.

R> for (i in -(burnin-1):draws) {
+ betadraw <- as.numeric(mvtnorm::rmvnorm(1, preMean,
+ sigma2draw * preCov))
+ tmp <- C0 + 0.5 * (crossprod(y - X %*% betadraw) +
+ crossprod((betadraw - b0), B0inv) %*% (betadraw - b0))
+ sigma2draw <- 1 / rgamma(1, preDf, rate = tmp)
+ if (i > 0) draws1[i, ] <- c(betadraw, sqrt(sigma2draw))
+ }

• Calculate posterior means in order to obtain point estimates for the parameters:

R> colMeans(draws1)

beta_0 beta_1 sigma
0.10085312 0.44590743 0.01101438

• Visualize the draws through coda’s native plot method:

R> plot(coda::mcmc(draws1))

4.2. The Bayesian normal linear model with SV errors

Instead of homoskedastic errors, we now specify the error covariance matrix in Equation 5 to
be Σ ≡ diag(eh1 , . . . , ehn), thus introducing nonlinear dependence between the observations
due to the AR(1)-nature of h. Instead of cooking up an entire new sampler, we adapt the
code from above utilizing the stochvol package.4 To do so, we simply replace the sampling
step of σ2

ϵ from an Inverse-Gamma distribution with a sampling step of θ and h through
a call to svsample_fast_cpp.5 This function is a minimal-overhead version of the regular

4Since stochvol version 3.0, regression is a built-in feature of the function svsample_fast_cpp through its
argument designmatrix.

5In earlier version of the stochvol package, this function was called svsample2.



16 Dealing with Stochastic Volatility in Time Series Using the R Package stochvol

Figure 9: Trace plots and kernel density estimates for some draws from the marginal posterior
distributions in the regression model with heteroskedastic errors. Underlying data is simulated
with βtrue = (0.1, 0.5)⊤, σtrue

ϵ = 0.01, n = 200.

svsample. It provides the full sampling functionality of the original version but has slightly
different default values, a simplified return value structure, and it does not perform costly
input checks. Thus, it executes faster and is more suited for repeated calls. The drawback is
that it needs to be used with proper care.6 Note that the current draws of the variables need
to be passed to the function through startpara and startlatent.
Here is how it goes:

• Simulate some data:

R> mu.true <- log(sigma.true^2)
R> phi.true <- 0.97
R> vv.true <- 0.3

6Erroneous or incompatible input values most likely result in run-time errors of compiled code, often
implying a segmentation fault and the consecutive abnormal termination of R. This can render debugging
tedious.
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R> simresid <- svsim(n, mu = mu.true, phi = phi.true, sigma = vv.true)
R> y <- X %*% beta.true + simresid$y

• Specify configuration parameters and prior values:

R> draws <- 5000
R> burnin <- 500
R> thinning <- 10
R> priors <- specify_priors(
+ mu = sv_normal(-10, 2),
+ phi = sv_beta(20, 1.5),
+ sigma2 = sv_gamma(0.5, 0.5)
+ )

• Assign some storage space for holding the draws and set initial values:

R> draws2 <- matrix(NA_real_, nrow = floor(draws / thinning),
+ ncol = 3 + n + p)
R> colnames(draws2) <- c("mu", "phi", "sigma",
+ paste("beta", 0:(p-1), sep = "_"), paste("h", 1:n, sep = "_"))
R> betadraw <- c(0, 0)
R> paradraw <- list(mu = -10, phi = 0.9, sigma = 0.2)
R> latentdraw <- rep(-10, n)
R> paranames <- names(paradraw)

• Run the main sampler, i.e., iteratively draw

– the latent volatilities/parameters by conditioning on the regression parameters and
calling svsample_fast_cpp,

– the regression parameters by conditioning on the latent volatilities and calling
rmvnorm:

R> for (i in -(burnin-1):draws) {
+ ytilde <- y - X %*% betadraw
+ svdraw <- svsample_fast_cpp(ytilde, startpara = paradraw,
+ startlatent = latentdraw, priorspec = priors)
+ paradraw <- svdraw$para
+ latentdraw <- drop(svdraw$latent)
+ normalizer <- as.numeric(exp(-latentdraw / 2))
+ Xnew <- X * normalizer
+ ynew <- y * normalizer
+ Sigma <- solve(crossprod(Xnew) + B0inv)
+ mu <- Sigma %*% (crossprod(Xnew, ynew) + B0inv %*% b0)
+ betadraw <- as.numeric(mvtnorm::rmvnorm(1, mu, Sigma))
+ if (i > 0 && i %% thinning == 0) {
+ draws2[i/thinning, 1:3] <- drop(paradraw)[paranames]
+ draws2[i/thinning, 4:5] <- betadraw
+ draws2[i/thinning, 6:(n+5)] <- latentdraw
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+ }
+ }

• Finally, visualize and summarize (some) posterior draws:

R> plot(coda::mcmc(draws2[, 4:8]))

Figure 10: Trace plots and kernel density estimates in the regression model with heteroskedas-
tic errors. Data is simulated with βtrue = (0.1, 0.5)⊤, htrue

1 = −8.28, htrue
2 = −8.50, n = 200.
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R> colMeans(draws2[, 4:8])

beta_0 beta_1 h_1 h_2 h_3
0.09937968 0.45411071 -8.49601019 -8.41591431 -8.65376029

It should be noted that even though svsample_fast_cpp is considerably faster than svsample,
the cost of interpreting this function in each MCMC iteration is still rather high (which lies in
the nature of R as an interpreted language). Thus, as of package version 0.8-0, a single-step
update is also made available at the C/C++ level for samplers coded there. For details, please
consult the NEWS file in the package source; for an application case using this approach, see
Kastner, Frühwirth-Schnatter, and Lopes (2014).

5. Illustrative predictive exercise
In the following, we compare the performance of the Bayesian normal linear model with
homoskedastic errors from Section 4.1 with the Bayesian normal linear model with SV errors
from Section 4.2 using the exrates dataset introduced in Section 3.1. As a benchmark,
we also include the Bayesian normal linear model with GARCH(1,1) errors given through
Equation 5 with

Σ = diag(σ2
1, . . . , σ2

n),
σ2

t = α0 + α1ỹ2
t−1 + α2σ2

t−1,

where time index t = 1, . . . , n. In the second equation, ỹt−1 denotes the past “residual”, i.e.,
the (t − 1)th element of ỹ = y − Xβ.

5.1. Model setup

We again use the daily price of 1 EUR in USD from January 3, 2000 to April 4, 2012, denoted
by p = (p1, p2, . . . , pn)⊤. This time however, instead of modeling log returns, we investigate
the development of log levels by regression. Let y contain the logarithm of all observations
except the very first one, and let X denote the design matrix containing ones in the first
column and lagged log prices in the second, i.e.,

y =


log p2
log p3

...
log pn

 , X =


1 log p1
1 log p2
...

...
1 log pn−1

 .

Note that this specification simply corresponds to an AR(1) model for the log prices with
three different error specifications: homoskedastic, SV, GARCH(1,1). It is a generalization
of directly dealing with demeaned log returns where β0 is a priori assumed to be equal to the
mean of the log returns and β1 is held constant at 1.

R> x <- log(exrates$USD[-length(exrates$USD)])
R> y <- log(exrates$USD[-1])
R> X <- matrix(c(rep(1, length(x)), x), nrow = length(x))
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R> par(mfrow=c(1,1), mar = c(2.9, 2.9, 2.7, .5), mgp = c(1.8,.6,0), tcl = -.4)
R> plot(x,y, xlab=expression(log(p[t])), ylab=expression(log(p[t+1])),
+ main="Scatterplot of lagged daily log prices of 1 EUR in USD",
+ col="#00000022", pch=16, cex=1)
R> abline(0,1)

Irrespectively of the error specification, we expect the posterior distribution of β to spread
around (0, 1)⊤ which corresponds to a random walk. A scatterplot of log pt against log pt+1,
displayed in Figure 11, confirms this.

Figure 11: Scatterplot of daily log prices at time t against daily log prices at time t + 1. The
solid line indicates the identity function f(x) = x.

5.2. Posterior inference

To obtain draws from the posterior distributions for the models with homoskedastic/SV errors,
samplers developed in Section 4 are used. For the GARCH-errors, a simple random walk
Metropolis-Hastings sampler is employed. We run each of the three samplers for 100 000
iterations and discard the first 10 000 draws as burn-in. Starting values and tuning parameters
are set using maximum likelihood estimates obtained through the R package fGarch (Wuertz,
Chalabi, Miklovic, Boudt, Chausse, and others 2013).
Aiming for comparable results with minimal prior impact on predictive performance, the
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hyperparameters are chosen to yield vague priors: b0 = (0, 0)⊤, B0 = diag(1010, 1010), c0 =
C0 = 0.001, bµ = 0, Bµ = 104, a0 = 1, b0 = 1, Bση = 1. For the GARCH(1,1) parameter
vector α = (α0, α1, α2)⊤, we pick independent flat priors on R+ for the components; the initial
variance σ2

0 is fixed to the empirical residual variance and ỹ0 is assumed to be zero. Due to
the length of the dataset (and its obvious heteroskedasticity), none of these specific choices
seem to particularly influence the following analysis. Note, however, that for shorter series or
series with less pronounced heteroskedasticity, sensible prior choices are of great importance
as the likelihood carries less information in these cases.
The samplers yield slightly different posteriors for β, visualized in Figure 12. In the top
panels, the estimated marginal posterior densities p(β0|y) and p(β1|y) are displayed; the
bottom panel depicts a scatterplot of draws from the joint posterior β|y.

Figure 12: Visualization of the posterior distributions β|y for the model with SV regression
residuals, the model with GARCH(1,1) regression residuals, and the model with homoskedas-
tic regression residuals. Top panels: Kernel density estimates of the univariate posterior
marginal distributions. Bottom panel: Bivariate scatterplot of posterior draws.

To assess the model fit, mean standardized residuals are depicted in Figure 13. The model
with homoskedastic errors shows deficiencies in terms of pronounced dependence amongst the
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residuals. This can clearly be seen in the top left panel, where mean standardized residuals
are plotted against time. The middle left panel shows the same plot for the model with
GARCH errors where this effect is greatly diminished. The bottom left panel pictures that
plot for the model with SV errors; here, this effect practically vanishes. Moreover, in the
model with homoskedastic errors, the normality assumption about the unconditional error
distribution is clearly violated. This can be seen by inspecting the quantile-quantile plot in
the top right panel, where observed residuals exhibit much heavier tails than one would expect
from a normal distribution. The model with GARCH errors provides a better fit, however,
heavy tails are still visible. Standardized residuals from the model with SV errors appear to
be approximately normal with only few potential outliers.

Figure 13: Visualization of mean standardized residuals. Top left panel shows a scatterplot
against time for the model with homoskedastic errors, middle left panel shows this plot for
the model with GARCH errors, and bottom left panel shows this plot for the model with
SV errors. Quantile-Quantile plots of empirical quantiles against expected quantiles from a
N (0, 1)-distribution are displayed on the panels on the right-hand side.
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5.3. Measuring predictive performance and model fit

Within a Bayesian framework, a natural way of assessing the predictive performance of a
given model is through its predictive density (sometimes also referred to as posterior predictive
distribution). It is given through

p(yt+1|yo
[1:t]) =

∫
K

p(yt+1|yo
[1:t], κ) × p(κ|yo

[1:t]) dκ, (6)

where κ denotes the vector of all unobservables, i.e., parameters and possible latent variables.
Note that for the model with homoskedastic errors, κ = (β, σϵ)⊤; for the model with SV errors,
κ = (β, θ, h)⊤; in the GARCH(1,1) case, κ = (β, α, σ2

0, ỹ2
0)⊤. By using the superscript o in

yo
[1:t], we follow Geweke and Amisano (2010) and denote ex post realizations (observations)

for the set of points in time {1, 2, . . . , t} of the ex ante random values y[1:t] = (y1, y2, . . . , yt)⊤.
Integration is carried out over K which simply stands for the space of all possible values for
κ. Equation 6 can be viewed as the integral of the likelihood function over the joint posterior
distribution of the unobservables κ. Thus, it can be interpreted as the predictive density for
a future value yt+1 after integrating out the uncertainty about κ, conditional on the history
yo

[1:t].
In the SV errors case, Equation 6 is a (n+p+3)-dimensional integral which cannot be solved
analytically. Nevertheless, it may be evaluated at an arbitrary point x through Monte Carlo
integration,

p(x|yo
[1:t]) ≈ 1

M

M∑
m=1

p(x|yo
[1:t], κ

(m)
[1:t]), (7)

where κ
(m)
[1:t] stands for the mth draw from the respective posterior distribution up to time t. If

Equation 7 is evaluated at x = yo
t+1, we refer to it as the (one-step-ahead) predictive likelihood

at time t + 1, denoted PLt+1. Moreover, draws from the posterior predictive distribution
can be obtained by simulating values y

(m)
t+1 from the distribution given through the density

p(yt+1|yo
[1:t], κ

(m)
[1:t]), the summands of Equation 7.

For the model at hand, the predictive density and likelihood can thus be computed through
the following

Algorithm 1 (Predictive density and likelihood evaluation at time t + 1)

1. Reduce the dataset to a training set yo
[1:t] = (yo

1, . . . , yo
t )⊤.

2. Run the posterior sampler using data from the training set only to obtain M posterior
draws κ

(m)
[1:t], m = 1, . . . , M .

(3a.) Needed for the SV model only: Simulate M values from the conditional distribution
ht+1,[1:t]|yo

[1:t], κ[1:t] by drawing h
(m)
t+1,[1:t] from a normal distribution with mean µ

(m)
[1:t] +

ϕ
(m)
[1:t](h

(m)
t,[1:t] − µ

(m)
[1:t]) and standard deviation σ

(m)
η,[1:t] for m = 1, . . . , M .

(3b.) Needed for the GARCH model only: Obtain M draws from the conditional distribution

σt+1,[1:t]|yo
[1:t], κ[1:t] by computing σ

(m)
t+1,[1:t] =

√
α

(m)
0,[1:t] + α

(m)
1,[1:t] (ỹo

t )2 + α
(m)
2,[1:t]

(
σ

(m)
t,[1:t]

)2

for m = 1, . . . , M .
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4a. To obtain PLt+1, average over M densities of normal distributions with mean (1, yo
t ) ×

β
(m)
[1:t] and standard deviation exp{h

(m)
t+1,[1:t]/2} (SV model), σ

(m)
t+1,[1:t] (GARCH model), or

σ
(m)
ϵ,[1:t] (homoskedastic model), each evaluated at yo

t+1, for m = 1, . . . , M .

4b. To obtain M draws from the predictive distribution, simulate from a normal distribution
with mean (1, yo

t ) × β
(m)
[1:t] and standard deviation exp{h

(m)
t+1,[1:t]/2} (SV model), σ

(m)
t+1,[1:t]

(GARCH model), or σ
(m)
ϵ,[1:t] (homoskedastic model) for m = 1, . . . , M .

It is worth pointing out that log predictive likelihoods also carry an intrinsic connection to
the log marginal likelihood, defined through

log ML = log p(yo) = log
∫
K

p(yo|κ) × p(κ) dκ.

This real number corresponds to the logarithm of the normalizing constant which appears
in the denominator of Bayes’ law and is often used for evaluating model evidence. It can
straightforwardly be decomposed into the sum of the logarithms of the one-step-ahead pre-
dictive likelihoods:

log ML = log p(yo) = log
n∏

t=1
p(yo

t |yo
[1:t−1]) =

n∑
t=1

log PLt.

Thus, Algorithm 1 provides a conceptually simple way of computing the marginal likelihood.
However, these computations are quite costly in terms of CPU time, as they require an
individual model fit for each of the n points in time. On the other hand, due to the em-
barrassingly parallel nature of the task and because of today’s comparably easy access to
distributed computing environments, this burden becomes manageable. E.g., the computa-
tions for the stochastic volatility analysis in this paper have been conducted in less than one
hour, using 25 IBM dx360M3 nodes within a cluster of workstations. Implementation in R
was achieved through the packages parallel (R Core Team 2016) and snow (Tierney, Rossini,
Li, and Sevcikova 2013).
Cumulative sums of log PLt also allow for model comparison through cumulative log predictive
Bayes factors. Letting PLt(A) denote the predictive likelihood of model A at time t, and
PLt(B) the corresponding value of model B, the cumulative log predictive Bayes factor at
time u (and starting point s) in favor of model A over model B is straightforwardly given
through

log
[

pA(yo
[s+1:u]|y

o
[1:s])

pB(yo
[s+1:u]|y

o
[1:s])

]
=

u∑
t=s+1

log
[

PLt(A)
PLt(B)

]
=

u∑
t=s+1

[log PLt(A) − log PLt(B)]. (8)

When the cumulative log predictive Bayes factor is positive at a given point in time, there
is evidence in favor of model A, and vice versa. In this context, information up to time s is
regarded as prior information, while out-of-sample predictive evaluation starts at time s + 1.
Note that the usual (overall) log Bayes factor is a special case of Equation 8 for s = 0 and
u = n.
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5.4. Results

In order to reduce prior influence, the first 1000 days are used as a training set only and the
evaluation of the predictive distribution starts at t = 1001, corresponding to December 4,
2003. The homoskedastic model is compared to the model with SV residuals in Figure 14. In
the top panel, the observed series along with the 98% one-day-ahead predictive intervals are
displayed. The bottom panel shows the log one-day-ahead predictive likelihood. According to
these values, SV errors can handle the inflated volatility during that time substantially better.
In the course of 2009, the width of the intervals as well as the predictive likelihoods consolidate
again. Figure 14 also contains a close-up of the one-year time span from September 2008 to
August 2009. Both credible intervals are similar at the beginning and at the end of this
interval. However, there is a substantial difference in early 2009, where SV intervals become
around twice as large compared to the corresponding homoskedastic analogs.
A visually barely distinguishable picture emerges when GARCH(1,1) errors are employed
instead of SV errors, thus no separate figure is included in this article.
The top panel of Figure 15 visualizes the performance of the three models; it depicts observed
regression residuals against their (one-day-ahead) predicted distributions. For the purpose of
this image, observed regression residuals are simply defined as the deviation of the data from
the median of the predicted distribution. It stands out that predictive quantiles arising from
the models with heteroskedastic errors exhibit much more flexibility to adapt to the “current
state of the world”, while the simpler homoskedastic model barely exhibits this feature.
Generally speaking, there is little difference in predicted residuals until the beginning of 2007.
However, during the pre-crisis era (less volatility) and during the actual crisis (more volatility),
the models catering for heteroskedasticity perform substantially better. It is interesting to see
that predictive intervals for the models with SV errors and GARCH errors are very similar.
In the bottom panel of Figure 15, the cumulative sums of the log predictive Bayes factors
are displayed. The last points plotted equal to 176.52 in the SV case and 166.37 in the
GARCH case; this provides overwhelming overall evidence in favor of a model catering for
heteroskedasticity and “decisive” (Jeffreys 1961) respectively “very strong” (Kass and Raftery
1995) evidence in favor of SV over vanilla GARCH(1,1) with a final cumulative predictive
Bayes factor around 25 000 : 1.
It is worth noting that for other exchange rates contained in exrates, a qualitatively similar
picture emerges. For an overview of cumulative log predictive likelihoods, see Table 1.
As pointed out above, the analysis of log returns can be viewed upon as a special case
of the analysis of log levels where β1 ≡ 1 is fixed a priori. When doing so, evidence in
favor of heteroskedasticity is again striking. Once more, the model with SV scores highest;
its demeaned predictive quantiles are almost indistinguishable from the “varying β1 case”.
Predictive quantiles of the model with GARCH residuals again resemble those of the model
with SV residuals very closely. The sum of log predictive likelihoods for t ∈ {1001, 1002, . . . , n}
is given in the last line of Table 1. The values are slightly but consistently lower than for the
models where β1 is estimated from the data. The display of predictive intervals for the log
returns is practically identical to Figure 15 and thus omitted here.

7For exchange rates of the Danish krone with respect to the euro, we analyze 1000*log(exrates$DKK), i.e.,
per mille (‰) log prices. This way, we avoid convergence issues when obtaining starting values for the MCMC
sampler from fGarch that appear otherwise because the krone is pegged very closely to the euro.

8These results refer to the analysis of log returns by means of a intercept-only model, i.e., AR(0).
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Observed series and 98% one−day−ahead predictive intervals
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Figure 14: Top panel: Observed series (green) and symmetrical 98% one-day-ahead predictive
intervals for the model with homoskedastic errors (red) and the model with SV errors (black).
The display also contains a close-up, showing only the period from September 2008 until
August 2009. This time span is chosen to include the most noticeable ramifications of the
financial crisis. During that phase, predictive performance of the model with homoskedastic
errors deteriorates substantially, while SV errors can capture the inflated volatility much
better. Bottom panel: Log one-day-ahead predictive likelihoods for both models.



Gregor Kastner 27

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●
●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●●
●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●

●

●
●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●
●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●●
●
●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●●

●●

●
●

●

●

●

●

●●

●

●

●

●●

●

●

●
●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●
●

●

●

●
●●

●

●

●

●

●

●●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●●●

●

●●
●

●

●●

●

●

●

●
●

●
●
●
●●

●

●

●

●

●
●●

●

●

●

●

●●

●

●

●●

●

●

●

●
●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●●●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●●●

●

●

●

●●

●

●

●

●
●

●●

●
●

●

●

●

●

●
●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●
●

●
●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●
●

●

●●●
●

●

●

●

●●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●
●●

●
●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●

●

●

●

●●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●
●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

−0.04

−0.02

0.00

0.02

0.04

Observed and predicted residuals

● Observed residuals
1% and 99% one−day−ahead predictive quantiles: SV
1% and 99% one−day−ahead predictive quantiles: GARCH
1% and 99% one−day−ahead predictive quantiles: homoskedastic

2003−12−03 2004−12−17 2006−01−02 2007−01−18 2008−02−05 2009−02−23 2010−03−10 2011−03−23 2012−04−04

Cumulative log predictive Bayes factors in favor of heteroskedasticity

0

50

100

150

SV
GARCH

2003−12−03 2004−12−17 2006−01−02 2007−01−18 2008−02−05 2009−02−23 2010−03−10 2011−03−23 2012−04−04

Figure 15: Top panel: Observed residuals with respect to the median of the one-day-ahead
predictive distribution along with 1% and 99% quantiles of the respective predictive distribu-
tions. It can clearly be seen that the variances of the predictive distributions in the GARCH
and SV models adjust to heteroskedasticity, while the model with homoskedastic errors is
much more restrictive. Bottom panel: Cumulative log predictive Bayes factors in favor of the
model with SV residuals. Values greater than zero mean that the model with GARCH/SV
residuals performs better out of sample up to this point in time.
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Currency SV GARCH homoskedastic
AUD 7938 7890 7554
CAD 7851 7844 7714
CHF 9411 9337 8303
CZK 9046 8995 8659
DKK7 1473 1366 1178
GBP 8568 8549 8218
HKD 7907 7897 7728
IDR 7697 7662 7269
JPY 7607 7586 7280
KRW 7766 7749 7188
MXN 7536 7507 7055
MYR 8082 8064 7928
NOK 8648 8616 8331
NZD 7619 7587 7440
PHP 7890 7862 7654
PLN 8126 8094 7727
RON 9011 8880 8255
RUB 8664 8617 8146
SEK 9110 9101 8648
SGD 8540 8529 8308
THB 7867 7844 7692
USD 7878 7868 7701
USD [AR(0)]8 7876 7865 7699

Table 1: Final cumulative predictive log likelihoods for AR(1) models with different error
assumptions, applied to the logarithm of several EUR exchange rates. SV is strongly favored
in all cases.

Concluding this somewhat anecdotal prediction exercise, we would like to note that for a
thorough and more universal statement concerning the real-world applicability and predictive
accuracy of stochvol, further studies with different datasets and a richer variety of competing
models, potentially including realized volatility measures, are called for. Such a voluminous
undertaking is, however, beyond the scope of this paper.

6. Conclusion
The aim of this article was to introduce the reader to the functionality of stochvol. This
R package provides a fully Bayesian simulation-based approach for statistical inference in
stochastic volatility models. The typical application workflow of stochvol was illustrated
through the analysis of exchange rate data contained in the package’s exrates dataset. Fur-
thermore, it was shown how the package can be used as a “plug-in” tool for other MCMC
samplers. This was illustrated by estimating a Bayesian linear model with SV errors.
In the predictive example, both log levels of exchange rates from EUR to USD and log returns
thereof were analyzed. For this dataset, out-of-sample analysis through cumulative predictive
Bayes factors clearly showed that modeling regression residuals heteroskedastically substan-
tially improves predictive performance, especially in turbulent times. A direct comparison of
SV and vanilla GARCH(1,1) indicated that the former performs better in terms of predictive
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accuracy.
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